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Lattice Boltzmann models for nonequilibrium gas flows
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Due to its computational efficiency, the kinetic-based lattice Boltzmann method has recently been used to
model nonequilibrium gas dynamics. With appropriate boundary conditions, lattice Boltzmann models have
been able to capture both velocity slip and temperature jump at a solid surface. To enable these models to
simulate flows in the transition regime, both high-order and modified lattice Boltzmann models have been
proposed. In this paper, we demonstrate the advantages of the standard lattice Bhatnagar-Gross-Krook model
in predicting high-order rarefaction phenomenon. In addition, we show that current high-order lattice Boltz-
mann models are not yet able to capture the nonlinear constitutive relation for the stress in the Knudsen layer,
despite the improved predictions of the wall slip-velocity, especially for Poiseuille flow. By considering how
the wall affects the gas mean free path, we present a simplified high-order lattice Boltzmann model that can
predict flow in the transition regime and is also able to capture the essential characteristics of the Knudsen

layer.
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I. INTRODUCTION

Gas flows in microfluidic and/or nanofluidic devices have
found a broad range of applications, from extracting biologi-
cal samples to active aerodynamic flow control. Flows in
these miniaturized devices are generally low speed and often
exhibit nonequilibrium phenomena. As these flows are no
longer in local thermodynamic quasiequilibrium, the linear
constitutive relation for stress, which is assumed in the
Navier-Stokes equations, is no longer valid. Whether a gas
flow is in local equilibrium or not can be determined by the
Knudsen number, which is defined as

. (1)

where M\ is the mean free path of the gas molecules, L is a
characteristic length scale, and ® is a quantity of interest,
such as the gas density, pressure or temperature. When the
mean free path of the gas molecules approaches the length
scale of the system, effects occurring at the microscale and
the macroscale become increasingly coupled. This lack of
scale separation and local disequilibrium leads to the failure
of the Navier-Stokes equations.

The Navier-Stokes equations with no-velocity-slip and
no-temperature-jump wall conditions are only appropriate
when Kn<<0.001. Gas flows in microfluidic and/or nano-
fluidic devices are often in the slip (0.001 <Kn<0.1) or the
transition regime (0.1 <Kn<10). In these flow regimes, the
gas cannot properly be described as a continuous quasiequi-
librium fluid, nor as a free molecular flow. In practice, most
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devices will operate with a range of Knudsen numbers in
different parts of the device; this makes it even more difficult
to develop a generalized flow model.

For traditional high speed applications, accurate solutions
for nonequilibrium gas flows can be obtained by the direct
solution of the Boltzmann equation or by using the direct
simulation Monte Carlo (DSMC) method. However, for low
speed gas flows, these methods are impracticable with cur-
rent computer technology. The DSMC method suffers from
large statistical scatter, while the direct solution of the Bolt-
zmann equation is very complex [1,2]. Meanwhile, extended
hydrodynamic models, including Grad’s 13-moment method
and the Burnett equations, have failed to produce satisfactory
results for gas flows in the transition regime [3]. Although
significant progress has been made in coupling the Navier-
Stokes equations with the Bhatnagar-Gross-Krook (BGK)
model [4], developing the information preservation method
for DSMC [5,6], and reducing the statistical scatter associ-
ated with Monte Carlo methods [7,8], there is still no com-
prehensive and numerically economical model for simulating
low speed rarefied gas flows at the microscale and nanoscale.

In the last two decades, the lattice Boltzmann (LB)
method has been successfully developed as an alternative to
Navier-Stokes solvers. Recently, the LB methodology has
been used to model nonequilibrium gas flow in regimes
where the Navier-Stokes equations are no longer valid
[9-27]. One important advantage of the LB methodology is
that it is kinetic in nature, so the method does not suffer from
closure and boundary condition problems associated with
high-order continuum methods, such as Grad’s method of
moments [28]. In this paper, we will discuss the progress
made in modeling nonequilibrium gas flow using the LB
approach, with emphasis on our high-order LB model. Fur-
thermore, we will test these models to see whether they can
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capture the nonlinear constitutive relation for the stress in the
Knudsen layer, which is a critical feature for nonequilibrium
flow.

II. STANDARD LATTICE BGK MODEL

With appropriate boundary conditions, LB models have
demonstrated they can capture velocity slip and temperature
jump at a solid surface [25]. As Sbragaglia er al. [29] have
observed, the LB model has the potential to go beyond the
Navier-Stokes equations. In this paper, we show that the
standard lattice BGK model can describe not only the veloc-
ity slip but also some high-order rarefaction phenomena
which the Navier-Stokes equations fail to predict. The details
of the model are widely available in literature, e.g., [30],

I e@_fk__fk‘fiq_’_(ekl u)F;
ot k’c?x,- ¢ csp

where f; is the velocity distribution function, f;? is the dis-
tribution function at equilibrium, ey; is the lattice velocity, u
is the macroscopic velocity, ¢, is the sound speed of the
lattice fluid, p is the density, ¢ is the relaxation time, and F;
is an applied force.

After discretizing Eq. (2), we obtain

i, 2)
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X

where 7= ¢/ 6t is the nondimensional relaxation time and ot
is the time step.

For a two-dimensional, nine-velocity lattice model
(D2Q9), the equilibrium distribution function can be ex-
pressed as
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The lattice velocities, e, are given by
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where cf=cz/ 3, c=V3RT, and R is the gas constant. The heat
flux Q can be calculated by the nonequilibrium part of the
distribution function as
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FIG. 1. Tangential heat flux in Poiseuille flow with a uniform
temperature field.
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where 7, can be related to 7 via (7,—0.5)Pr=7-0.5 and Pr is
the Prandtl number. The kinetic boundary conditions given
by Ansumali and Karlin [31] are used in the simulations.
For a pressure driven flow in a channel, the Navier-Stokes
equations will predict a zero tangential heat flux if there is no
temperature variation in the channel. However, by directly
solving the Boltzmann equation, Ohwada et al. [32] have
observed a tangential heat flux, which can also be captured
by the standard lattice BGK model. In a Poiseuille flow with
the two plates at the same temperature, we examine the role
of the Knudsen number in the tangential heat flux. In Fig. 1,
the tangential heat flux Q, is nondimensionalized by pu,,c?,
where u,, is the mean channel velocity. When the Knudsen
number is small (Kn=0.01 and 0.05), the tangential heat flux
at the wall is positive and decreases away from the wall. At
Kn=0.05, the heat flux at the wall has increased but then
decreases and goes negative a short distance from the wall. If
the Knudsen number increases to 0.1, the tangential heat flux
in the whole flow field is negative, including at the wall, and
the magnitude has become substantially larger. This phenom-
enon has also been observed by Ohwada et al. [32] using the
linearized Boltzmann equation. For low speed flow with a
uniform temperature field, the total tangential heat flux, Q,, is
caused by the work done by the viscous shear Q, and the
pressure gradient, Q,. According to Grad’s 13 moment
model [33], Q, is proportional to the gradient of the shear
stress, which is positive for this case, and Q, is proportional
to the pressure gradient, which is negative. When the Knud-
sen number is small, Kn=0.01, the small amount of slip at
the wall leads to a large wall shear stress and a large gradient
of shear stress, so that the magnitude of Q; is relatively im-
portant. When the Knudsen number increases, the larger slip
velocity leads to a smaller shear stress and also its gradient.
Consequently, Q, becomes increasingly dominant which
leads to the total tangential heat flux Q, going negative at a
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FIG. 2. Schematic diagram showing the microscopic slip (u;p)
and macroscopic slip (u,) for Kramers” problem [34]. Actual veloc-
ity profile (—) and velocity profile predicted by the standard lattice
BGK model (- —) within the Knudsen layer.

Knudsen number of 0.1. This high-order rarefaction phenom-
enon cannot be captured by the Navier-Stokes equations,
which indicates that LB methods can go beyond the Navier-
Stokes level. However, the above lattice BGK model fails to
properly predict the flow characteristics in the Knudsen layer
which is illustrated in Fig. 2. As high-order moments are
important in describing flow in the Knudsen layer, new high-
order LB models are required for highly nonequilibrium gas
flows.

II1. HIGH-ORDER LB MODELS

To accurately describe rarefied gas dynamics beyond the
Navier-Stokes level, high-order LB models have been pro-
posed [21,37]. One reason the standard lattice BGK model
fails to capture the nonlinear constitutive behavior is that it
only retains velocity terms up to second order in the Hermite
expansion of the equilibrium distribution function. This is
not sufficient to accurately describe stresses in isothermal
flows [21]. To capture nonequilibrium effects, we should re-
tain up to fourth-order terms in the Hermite expansion [21].
Here, we can examine whether such a model can capture the
flow characteristics in the Knudsen layer by applying it to a
simple isothermal Couette flow. For the D2Q16 model, An-
sumali et al. [35] have derived an analytical solution for the
velocity profile in planar Couette flow. In Fig. 3, their ana-
lytical solution is compared with our DSMC results and the
solution of the linearized Boltzmann equation given by Sone
et al. [36]. For the Couette flows presented in this paper, the
bottom plate is located at y=—L/2 and moves with a velocity
—u,, and the top plate, at y=L/2, moves with a velocity u,,.
Only the upper half of the flow domain is shown in Fig. 3. It
is clear that the D2Q16 LB model is not able to resolve the
Knudsen layer in a quantitatively accurate way.

Although Ansumali et al. [35] have demonstrated that the
high-order LB models have improved current capability, the
nonlinear constitutive relation between stress and strain rate
in the Knudsen layer is still not captured. Furthermore, the
roots of the fourth-order Hermite polynomials are irrational,
so that the discrete velocities cannot match lattice nodes.
Additional effort, such as pointwise interpolation [38], is
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FIG. 3. Nondimensional velocity profiles for planar Couette
flow, where u,, is the velocity of the top plate. Comparison of the
analytical solution of Ansumali et al. [35] with (a) the linearized
Boltzmann solution obtained by Sone et al. [36]; (b) DSMC data.

therefore required and this dramatically increases the com-
putational cost (because it essentially becomes an off-lattice
discrete velocity method for solving the kinetic Boltzmann
equation). Worse still, these high-order LB models with large
numbers of discrete velocities are not numerically stable
[39]. To ensure that the computational particles can move on
the lattice nodes in any time step, a rational-number approxi-
mation technique, a concept recently demonstrated in one
dimension (1D) by Chikatamarla and Karlin [37], is used to
construct a simpler lattice structure to avoid pointwise inter-
polation. In a similar spirit, we have developed a simplified
high-order D2Q13 model which is described below,
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FIG. 4. Nondimensional velocity profiles for Poiseuille flow at
Knudsen numbers of 0.2257 and 0.9027, where u,, is the average
velocity. The LB models are compared with the solution of the
linearized Boltzmann equation obtained by Ohwada er al. [32].

where c;=c?/2 and c=\2RT. The lattice velocities, e, are
given by
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(8)

Figure 4 clearly shows that our D2Q13 performs much
better than the D2Q9 model for Poiseuille flow when com-
pared with the solution of the linearized Boltzman equation.
The improved performance of our D2QI13 model is also
demonstrated in Fig. 5, even though it fails to capture the
flow characteristics in the Knudsen layer.

IV. MODIFICATIONS

The currently available high-order models are not suffi-
ciently accurate to describe flow behavior in the Knudsen
layer. Other work to improve the LB model predictions has
appeared in the literature. Examples include regularization
methods that add an additional term considering the omitted
high-order moment effects [23,26], which is in the same
spirit as the regularized moment models [40,41]. Szalmads
[27] recently proposed a modification to implement the effect
of high-order moments through a fast relaxation mode,
which is similar to the split of fast and slow moments pro-
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FIG. 5. Nondimensional velocity profiles for planar Couette
flow, where u,, is the velocity of the moving top plate. The LB
models are compared with DSMC data.

posed by Gorban and Karlin [42]. Although the above modi-
fications have been shown to improve the capability of lattice
Boltzmann models, they are still at an early stage and further
work is clearly required. We have recently proposed a wall-
function approach for the standard lattice BGK model which
can accurately describe the nonlinear velocity profiles in the
Knudsen layer for simple planar Couette flows [22,25]. The
collisions between gas molecules and the wall means that the
mean free path of a gas will be reduced. As a consequence,
the bulk value does not accurately reflect the mean free path
in the Knudsen layer. The gas mean free path in the near-wall
region can be approximated as [22]

A

A= T 070001

)

where A, is the effective mean free path and C is a constant.
With increasing Knudsen number, the Knudsen layers will
start to overlap. For the flow between two parallel plates
considered here, the effective mean free path in the over-
lapped Knudsen layers is assumed to be

N
Ne= 1+0.7(e” O™ 4 g~ CULINY?

(10)

where y is the distance from the lower wall and L—y is the
distance from the upper wall. With our high-order model
given in Egs. (7) and (8), the wall-function approach can
enable the D2Q13 model to quantitatively simulate not only
planar Couette flow but also pressure-driven flows. Figure 6
shows that the nonlinear velocity profiles predicted by our
model for Knudsen numbers of 0.25 and 1.0 are in excellent
agreement with the solution of the linearized Boltzmann
equation obtained by Ohwada et al. [32]. In addition, Fig. 7
illustrates how our D2Q13 model, with the effect of the wall
taken into consideration, can produce accurate results that
are close to the direct solution of the Boltzmann equation at
a fraction of the computational cost.

046701-4



LATTICE BOLTZMANN MODELS FOR NONEQUILIBRIUM ...

1.0
o Kn=0.25,DSMC
Kn=0.25,D2Q13 with wall-function
0.94- - - Kn=0.25,D2Q9 with wall-function
¢ Kn=1.0,DSMC
----- Kn=1.0,D2Q13 with wall-function
08—~ Kn=1.0,02Q9 with wall-function
$
0.7 -
57
5
0.6 1
05 = i T T T T
0.0 0.1 0.2 0.3 0.4 0.5

y/L

FIG. 6. Nondimensional velocity profiles for planar Couette
flow, where u,, is the velocity of the top plate. The LB model with
the wall function is compared with DSMC data.

V. SUMMARY

The standard lattice BGK method is able to predict some
high-order rarefaction phenomena. However, high-order lat-
tice Boltzmann models, based on the BGK equation, cannot
capture the flow characteristics in the Knudsen layer with
sufficient accuracy. Although some modifications of the lat-
tice BGK model appear to improve the model’s performance,
significant work 1is still required for future high-order LB
methods to be quantitatively accurate. Meanwhile, with a
simple wall function to consider the wall effect on the gas
mean free path, our computationally efficient high-order
D2Q13 LB model is able to describe nonequilibrium flows
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FIG. 7. Nondimensional velocity profiles for Poiseuille flows at
Knudsen numbers of 0.2257 and 0.9027, where u,, is the average
velocity. The LB model with the wall function is compared to the
solution of the linearized Boltzmann equation obtained by Ohwada
et al. [32].

with accuracy comparable to both DSMC methods and the
direct solution of the linearized Boltzmann equation.
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